skip to main content


Search for: All records

Creators/Authors contains: "LiBretto, Nicole J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 23, 2024
  2. A series of Co–P materials with varying P : Co ratio from 0 to 4 supported on SBA-15 were evaluated for ethane dehydrogenation (EDH) performance. In comparison to monometallic Co, the Co–P materials have improved ethylene selectivity from 41% for Co to 88–90% for Co–P, which was attributed to the segregation of Co atoms and the formation of partial positive Co δ + sites in the Co–P materials due to charge transfer. Among the Co–P materials studied, an optimum in stability was observed in those containing a P : Co ratio in the range 1 to 2. Below this range, limited P is available to adequately separate Co atoms. Above this range, the excess P promotes coke formation through possible acid catalyzed pathways. The stability of two of the Co–P materials containing the Co 2 P and CoP phase, respectively, were further tested for EDH at 700 °C. Under these conditions, the ethylene selectivity was 98%, and both materials remained active with little to no deactivation for over 4 h. In comparison to a Pt–Sn reference, both Co–P materials showed vastly improved stability. Additionally, both Co–P materials showed no signs of sintering after EDH at 700 °C and maintained their respective Co 2 P and CoP phases. These results demonstrate the catalytic improvement with P incorporation and highlights the high stability of Co–P, and possibly other metal phosphides, as high temperature EDH catalysts. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    In heterogeneous catalysis, olefin oligomerization is typically performed on immobilized transition metal ions, such as Ni2+and Cr3+. Here we report that silica-supported, single site catalysts containing immobilized, main group Zn2+and Ga3+ion sites catalyze ethylene and propylene oligomerization to an equilibrium distribution of linear olefins with rates similar to that of Ni2+. The molecular weight distribution of products formed on Zn2+is similar to Ni2+, while Ga3+forms higher molecular weight olefins. In situ spectroscopic and computational studies suggest that oligomerization unexpectedly occurs by the Cossee-Arlman mechanism via metal hydride and metal alkyl intermediates formed during olefin insertion and β-hydride elimination elementary steps. Initiation of the catalytic cycle is proposed to occur by heterolytic C-H dissociation of ethylene, which occurs at about 250 °C where oligomerization is catalytically relevant. This work illuminates new chemistry for main group metal catalysts with potential for development of new oligomerization processes.

     
    more » « less